Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations

نویسندگان

  • Ahmed A. Hamoud Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, India | Department of Mathematics, Taiz University, Taiz, Yemen
  • Kirtiwant P. Ghadle Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, India
چکیده مقاله:

This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on their reliability and reduction in the size of the computational work. This study provides an analytical approximate to determine the behavior of the solution. It proves the existence and uniqueness results and convergence of the solution. In addition, it brings an example to examine the validity and applicability of the proposed techniques.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Uniqueness Results of Solutions for Fractional Volterra-Fredholm Integro-Differential Equations

This paper establishes a study on some important latest innovations in the uniqueness of solution for Caputo fractional Volterra-Fredholm integro-differential equations. To apply this, the study uses Banach contraction  principle and Bihari's inequality.  A wider applicability of these techniques are based on their reliability and reduction in the size of the mathematical work.

متن کامل

Existence and uniqueness of solutions for fuzzy fractional Volterra-Fredholm integro-differential equations

In this paper we use the fuzzy Caputo derivatives under generalized Hukuhara difference to introduce fuzzy fractional Volterra-Fredholm integro-differential equations and prove the existence and uniqueness of the solutions for this class of fractional equations.

متن کامل

SPLINE COLLOCATION FOR FREDHOLM AND VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

A collocation procedure is developed for the linear and nonlinear Fredholm and Volterraintegro-differential equations, using the globally defined B-spline and auxiliary basis functions.The solutionis collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula.The error analysis of proposed numerical method is studied theoretically. Numerical results are given toil...

متن کامل

Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations

This paper successfully applies the Adomian decomposition  and the modified Laplace Adomian decomposition methods to find  the approximate solution of a nonlinear fractional Volterra-Fredholm integro-differential equation. The reliability of the methods and reduction in the size of the computational work give these methods a wider applicability. Also, the behavior of the solution can be formall...

متن کامل

Spline Collocation for Fredholm and Volterra Integro - Differential Equations

A collocation procedure is developed for the linear and nonlinear Fredholm and Volterra integro-differential equations, using the globally defined B-spline and auxiliary basis functions.The solution is collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. The error analysis of proposed numerical method is studied theoretically. Numerical results are given t...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره 1

صفحات  58- 69

تاریخ انتشار 2019-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023